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1.  Introduction 
 
Optical properties of non-crystalline semiconductors 

are subject of high interest of investigators for large-scale 
applicability of these materials as well as for the sake to 
obtain important information concerning processes in such 
materials.  

From beginning of investigation optical phenomena in 
chalcogenide glasses (Kolomijets)   many works were 
published in this field mostly presented experimental 
results. Non-crystalline semiconductors are now applied as 
optical light-guide, as elements of optoelectronics (optical 
switches and so on), xero-materials, memory elements and 
others 
 [1-15]. Situation still seems unsatisfactory if one wants to 
understand physical processes overshooting in these 
materials. Up to now generally accepted model doesn’t 
exist which would be capable of understanding wide 
spectrum optical and other phenomena in these matters. 
[16-25]. 

In works [26-33] has been presented so-called barrier-
cluster model of a non-crystalline semiconductor. On the 
base of the barrier-cluster model some phenomena were 
explained largely optical ones in non-crystalline 
semiconductor. Especially, here belongs the explanation of 
exponential tails of an optical absorption and explanation 
of thermal influence on it in the region of lower 
temperatures as well as in one of higher temperatures.  On 
the base of the barrier-cluster model has been described 
quantitatively also the mechanism of electroabsorption as 
well as photoluminescence. 

 In this article basic ideas of the barrier-cluster model 
will be introduced as well as a total approach to 
explanation optical phenomena based on it. Thereafter, 
processes connected with photoconductivity will be 
described in more detail.   

The photoelectric conductivity σ of chalcogenide 
glasses exhibits usually activation dependence in a 

relatively wide range of temperatures [16, 17]. A relation 
of the following type can thus express it 
 
 ln σ ≈ -Wphoto/ kT                                   (1) 
 
where Wphoto is the relevant activating energy of 
photoconductivity. 

At a further increase of temperature, a distinct 
maximum can be observed [16, 17]. The curve shape at 
both sides of this maximum has an exponential character. 

 
1.1  Chalcogenide glasses 
 
The first fundamental knowledge on non-crystalline 

semiconductors can be found in [16,17]. Other relevant 
publications on these materials are [18-23]. 

One of the authors of the monograph [16], N.P.Mott, 
was awarded the Nobel Prize in 1978 for his extraordinary 
contribution to the development of the physics of non-
crystalline solids. He contributed substantially to the 
understanding of the most crucial ideas on the nature of 
the electronic spectrum and on the mechanism of electric 
charge transport in non-crystalline semiconductors. 
Despite this, there are still a number of crucial 
experimental phenomena unexplained. The structure of 
amorphous substances also remains an open question. It 
seems that a logical way leading from clarifying structure 
(using demanding experimental equipment, for example) 
to a theory based on aknown structure meets invincible 
obstacles already on the experimental level.  

Different models are used in the creation of theoretical 
knowledge about amorphous materials, and the 
consequences of a particular model are after wards 
compared with reality. In this way, suitability of a 
particular model is verified. It is not that simple, however. 
No model has been suggested yet that would explain 
sufficiently the wide range of observed phenomena. 
Indeed, this may be connected to the nature of the object 
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under discussion. Non-crystalline solids present an 
extremely wide variety of materials because they also 
include many component systems, in which the 
stoichiometric abundance of particular substances is not 
needed. Moreover, they are mostly metastable systems, 
and their metastable state depends on sample preparation. 
A little deviation in this procedure may lead to the creation 
of a quite different metastable state, and thus to the 
formation of a different non-crystalline material. A theory 
that would include all this complexity seems to be very 
demanding and complex.  

 
1.1 Optical phenomena in non-crystalline  
       semiconductors 
 
The optical phenomena in non-crystalline 

semiconductors are of high interest. From the point of 
view of understanding the physical processes in non-
crystalline semiconductors, it is very important to study 
optical properties of these materials, especially the optical 
absorption and luminescence (especially the 
photoluminescence).  

In most crystalline solids, optical absorption is 
characterized by a sharp edge of the absorption band. Its 
position corresponds to the optical width of the forbidden 
band. However, the situation is different in the case of 
non-crystalline semiconductors. The absorption band near 
its border is smeared out and manifest itself as a tail that 
extends deeply into the forbidden band [16-20, 24-31]. Its 
profile is exponential as a rule. The exponential tails at 
higher temperatures tend to fit Urbach´s formula. The 
slope of the tails changes with the temperature decrease. 
At low enough temperatures, the slope of the tail rises 
when the temperature decreases. However, a certain 
parallel shift of the curves towards lower absorption edge 
is observed. 

The nature of the absorption edge in non-crystalline 
(amorphous) semiconductors has been longly discussed in 
literature for many years. The attempts of many authors to 
explain the absorption edge did not gave, up to day, 
satisfactory results [32-34].  

From among existing theories that try to explain the 
Urbach’s rule, none is preferred as yet. The following 
theories try to explain the behavior of the material:  

 
(a) The theory of bound exciton.  
 
It is an exciton that interacts with lattice oscillations. 

According to Toyozawa [16,17,35], the Gaussian shape of 
the exciton absorption line changes strongly if we consider 
the quadratic terms of mutual exciton-phonon interaction. 
The long-wave wing of the line changes from Gaussian to 
exponential. The most difficult problem to explain is why 
the quadratic terms exceed the linear terms.  

 
 (b) The theory of broadening the absorption  
       margin by an electric field  
 
This is the so-called Franc-Keldysh effect [16,17,36]. 

Its nature is in tunneling of the Bloch states in to the 
forbidden band when the energy of a photon is smaller 
than it would be at the bottom of the allowed band. At that, 
the origin of strong electric fields and, especially, the 
explanation of temperature dependence of the tail remain 
questionable.  

  
(c) The theory of the exciton line broadening by an  
       electric field.  
 
Dow and Redfield [34] investigated the problem of 

absorption in adirect transition of exciton in a homogenous 
electric field. They pointed out that the tail shape is 
exponential. On this basis, they expressed a hypothesis 
that Urbach’s rule can be explained by broadening of the 
exciton absorption line by an electric field. There remains, 
however, a problem of explaining the origin of internal 
electric fields as well as the observed temperature 
dependence. Mott [16] assumed that just this theory could 
be the most acceptable one for the non-crystalline 
semiconductors. However, he raised some questions at the 
same time. Do excitons exist at all in amorphous 
materials? What is the origin of internal electric fields? No 
one has offered a satisfactory answer yet.  

In amorphous semiconductors, however, there exist 
some specific ways to explain the origin of the exponential 
tails. Questions of exponential tails and of density states at 
the band margins were widely discussed in the scientific 
community [16,17]. From this point of view, the 
exponential tails of optical absorption should rise as a 
result of optical transitions between levels belonging to the 
tails of density states at the margins of the valence and 
conduction bands. It is usually assumed that the tails of 
density states may have an exponential shape as well. 
According to Mott [16], however, such an explanation is 
considered to be of low probability. The main argument 
opposing this concept is the fact that the slope of the 
dependence lnα(hf) has approximately the same slope on 
all semiconductors. It is doubtful to expect that the tails of 
density states should be equal, at least nearly, in all 
amorphous semiconductors.  

To conclude this part, it should be stated, in 
accordance with Overhof [23], that as yet there is no 
plausible theory that would explains satisfactorily the 
origin of exponential tails in non-crystalline or even in 
crystalline semiconductors.  

In this work, the results of the author’s effort to clarify 
physical properties of non-crystalline semiconductors in a 
more comprehensive way are presented. The existence of a 
potential barrier among individual microscopic regions of 
a non-crystalline solid seems to be the most typical feature 
of this model. It is called the barrier-cluster model. The 
most important optical phenomena, observed in non-
crystalline semiconductors, are then explained on the basis 
of this model. Before all this, physical mechanisms 
responsible for the rise and properties of exponential tails 
of optical absorption are addressed. From among further 
important optical phenomena explained in this study, 
electroabsorption, photoluminescence, photoelectric 
conductivity, and quantum yield should be mentioned. The 
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barrier model enables us also to explain a series of electric 
transport phenomena.  

Up to now no satisfactory model has been proposed, 
in the frame of which it would be possible to explain a 
wider enough palette of optical and other processes in non-
crystalline semiconductors.  In the papers [37-45], the 
explanation of some optical phenomena  in chalcogenide 
glasses on the base of a barrier- cluster model was presented. 
We presume that the barrier-cluster model of a non-
crystalline semiconductor could be taken adequate for this 
aim. This model was repeatedly used for understanding 
some special problems of the non-crystalline solid state 
physics [37-45]. Naturally, one can not expect that all 
phenomena in non-crystalline materials can be explained 
by virtue of the barrier-cluster model. Nevertheless, it has 
allowed describing some most typical common features 
for a sufficiently broad class of non-crystalline materials. 

The photoluminescence based on the barrier-cluster 
model of a non-crystalline solid was described in some 
previous papers by the author [37-45].  

Street et al (1974) [46] discovered that the 
temperature dependence of the luminescence intensity in 
quenched a-As2Se3 has the form: 

 
 I ~ exp(-T/To)                                   (2) 

 
over four orders of magnitude of the intensity, where To is 
a constant.  This dependence I(T) was observed for 
instance in [47-52].  

There is a serious problem how to understand the 
photoluminescence and especially how to explain it s 
temperature dependence. The luminescence is an 
important optical phenomenon for the theory of non-
crystalline semiconductors. 

The photoluminescence intensity in amorphous 
semiconductors decreases in time after the beginning the 
illumination at low temperatures. The experiments show 
[16, 17, 52-54] that the originally high luminescence level 
decreases gradually and stabilizes at a considerably lower 
level after a certain time. This fatigue effect is strongest in 
chalcogenide glasses (Cernogora et al 1973) [55] but a 
comparatively weak fatiguing effect has been found 
recently in amorphous silicon (Morigaki et al 1980) [56]. 
Biegelsen and Street (1980) [57], using ESR data and Shah 
and DiGiovanni (1981) [58, 59] using luminescence decay 
data concluded that fatigue in a-As2S3 is due to the 
creation of non-radiative centers by the illumination. Kirby 
and Davis reported the luminescence fatigue in amorphous 
phosphorus as early as (1980) [60]. The experimental 
results are presented in the papers [61-63]. 

Theoretical explanations of Street´s empirical law 
have been given by Street (1976) [64], Philips (1980) [65], 
Gee and Kastner (1979) [66], Highasi and Kastner (1979) 
[67,68].  

In crystals, the temperature dependence of 
luminescence is usually well described by a thermally 
activated escape process of the trapped carrier from the 
luminescence center to a non-radiative center. If such a 
model were used for a chalcogenide glass, temperature-
dependent activation energies ranging from 1 meV at low 

temperatures to 100 meV at high temperatures should be 
assumed.  

Gee and Kastner (1979) and Higashi and Kastner 
(1979) have suggested that the Street´s formula  (2) is the 
result of a distribution of non-radiative  rates which arises, 
in turn, from a distribution of activation energies for the 
non-radiative process. It will be immediately noticed that 
the assumption of a single radiative rate is certainly 
incorrect. Indeed Highasi and Kastner (1979) showed that 
the time dependence (fatigue) of the photoluminescence 
the total light decay is determined by the very broad 
spectrum of radiative rates.   

In present no model exists, which is able to explain 
sufficiently wide spectrum of physical phenomena in non-
crystalline semiconductors. The existing models of 
luminescence in non-crystalline semiconductors were 
derived from the VAPs concept for these materials. 

The present state of knowledge is full of many 
contradictions. 

Recently, Tanaka has questioned the presence of the 
charged defects [69]. The new knowledge’s above possible 
cluster structure of chalcogenide glasses (especially closed 
clusters) questioned the model based on VAPs [70-72]. In 
[70] we can read: “Recently, a novel model for 
photodarkening in a-As2Se(S)3 has been proposed… 
Unlike the previous theories, the new model takes into 
account the layered cluster structure of semiconductors.” 

The problem of the structure of the non-crystalline 
semiconductors was studied in [73-75].  

 
1.2   Structure     
 
In spite of tremendous efforts dedicated to 

chalcogenide glasses, the structure of these materials is not 
completely understood [76-82]. Some models have been 
developed with the aim to explain the first sharp 
diffraction peak in the diffraction pattern of various non-
crystalline materials.  

Many years ago it was pointed out that no ESR signal 
was detected in amorphous chalcogenides (a-Se, a-As2S3). 
This observation, i.e. the absence of spins in chalcogenide 
glasses, led Anderson [76] and Street and Mott [77] to 
formulate their negative effective correlation energy 
(negative-U) models, in terms of charged defects. The 
model assumes the presence of dangling bonds, but with 
the combination of positively and negatively charged 
dangling bonds, D+ and D' having respectively no and two 
spin-paired electrons, being energetically favored over the 
neutral dangling bond Do with one unpaired electron. The 
defect-based version of the negative-U model was 
subsequently developed by Kastner, Adler and Fritzsche 
[78] for the case of a-Se with singly coordinated, 
negatively charged selenium (C1´) and a three-fold 
coordinated, positively charged site (C3

+) emerged as the 
most likely equilibrium defect configurations. Thus, the 
valence alternation pair concept appeared. Up to day no 
direct experimental evidence was found for the valence 
alternation pair in chalcogenide glasses. Recently, Tanaka 
[69] has questioned the presence of the charged defects, on 
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the basis of optical absorption measurements on highly 
purified AS2S3 samples. 

The discoveries of the fullerenes led to the suggestion 
that other low-dimensional covalent systems, as e.g. 
chalcogenides could present special configurations similar 
to fullerenes or nanotubes. Fullerene-like objects and 
nanotubes with or without closed ends have been 
simulated in order to demonstrate that such special 
"objects" are possible at least in arsenic chalcogenides [70-
72,74,75]. The self-organization in arsenic chalcogenides 
is (basically) vital for the formation of the low 
dimensional objects in chalcogenides. 

Several types of closed nanoclusters of As2S3 were 
built (proposed). The fairly good agreement of several 
characteristics, calculated from the model, with the 
experimental ones, allows to conclude that a model with 
closed ends is very attractive. 

As a consequence, the dangling bonds are naturally 
eliminated during the glass formation, and, therefore, no 
significant amount of charged coordination defects is 
necessary to explain the glass structure. On the contrary, 
the formation of high amount of VAPs is predicted during 
illumination, and in the light saturated state of the glass. A 
closed cluster model for the binary arsenic-chalcogen 
glasses seems to be attractive for the explanation of the 
structural and electronic properties of non-crystalline 
chalcogenides. In the same time the direct consequence of 
the model is the absence of the defects of coordination.  

 
2. Barrier-cluster model and optical  
     phenomena in chalcogenide glasses 
 
2.1   Barrier-cluster model  
 
The barrier-cluster model assumes that there exist 

potential barriers in the non-crystalline semiconductor (Fig. 
1), which separate the certain microregions – clusters, and 
in this way, they hinder the transport of the carriers at the 
margin of the conduction or valence bands [37-45]. The 
barrier-shave also an influence upon the optical absorption 
at the optical absorption edge. The influence of the barrier 
is caused in the first line by their inducing a strong electron-
phonon interaction. The strong electron-phonon interaction 
results in the fact that on optical transition, apart from the 
energy of a photon, an electron can also take the energy of 
a phonon. On such a transition, the total energy taken by an 
electron equals the sum of the photon and phonon 
energies.  

Another important factor - as far as influence of the 
barriers is concerned - is that the absorption of light in the 
region of the optical absorption edge at low temperatures is 
usually accompaned with tunneling of the carriers through 
the potential barrier. Due to this, the absorption process is 
influenced by barriers. These facts enable us to explain 
successfully not only the creation of the exponential tails at 
the optical absorption edge, but also their temperature 
dependence at high, as well as at low, temperatures. 
 

 
 

Fig. 1 The electronic spectrum of an amorphous 
semiconductor. 

 
 

2.2 Optical absorption on the base of barrier- 
        cluster model   
 
In most crystalline solids, optical absorption is 

characterized by a sharp edge at the margin of the 
absorption band. Its position corresponds to the optical 
width of the forbidden band. However, the situation is 
different in the case of non-crystalline semiconductors. 
The absorption band near its border is smeared out and it 
creates a tail that extends deep into the forbidden band. Its 
profile is exponential as a rule. The exponential tails at 
higher temperatures tend to fit Urbachs formula. The slope 
of the tails changes with further temperature decrease.  At 
lower temperatures, the slope of the tails does not change 
with further temperature decrease. However, a certain 
parallel shift towards lower absorption is observed. Optical 
phenomena in non-crystalline semiconductors represent a 
number of complex phenomena. One of the great puzzles 
to be explained is the origin of exponential tails. 

 
Higher temperature range: The starting point of the 

following considerations on the base of barrier model is an 
assumption that the potential barriers in non-crystalline 
semiconductors proper conditions occur for a distinct 
absorption of light, with phonons participating in the 
energy exchange [37-45]. We assume that an electron in 
an optical transition accepts not only the energy hf of a 
photon but also the phonon energy Wphon = W2 (Fig. 2). 
Thus, the whole energy accepted is 

 
 hf + Wphon                                    (3) 
 
where Wphon is the energy acquired from a phonon "field”. 
The quantity hf is positively determined by the wavelength 
of radiation, while Wphon has a statistical character. 
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Fig. 2. Electronic spectrum of non-crystalline 
semiconductor and optical transition at higher (left) and  
                         at lower (right) temperature. 

 
 

In principle, a photon can be absorbed only when the 
energy of the electron is sufficient to cause a transition of 
the electron into the conduction band. It should be taken 
into account, however, that optical transitions on the 
energy levels lying just below the tops of barriers will 
dominate at higher temperatures. In this case, the 
probability of transition within a single localized region is 
small. The levels in adjacent microregions offer more 
possibilities of combination. However, they are connected 
with tunneling through barriers. Under these assumptions, 
the transitions on levels just below the barrier peaks will 
be more probable for two reasons. The transitions on lower 
levels will be restricted considerably by a small tunneling 
probability. The second reason rests in strong electron-
phonon interaction caused by the barriers. The number of 
electrons that can acquire such energy from a phonon field 
depends on temperature. The number of electron 
transitions when irradiating material by "low energy" 
photons (and thus, also the coefficient of optical 
absorption α) is directly proportional to the phonon 
concentration corresponding to the minimal (least) energy 
needed for transition.  For the absorption coefficient it can 
be written [37-45]. 
 
 α ≈ exp(hf/2kT)                               (4) 
 
or, for a particular (constant) temperature 
 
 In α =  hf + const                             (5) 
 
which is a mathematical expression of an exponential tail 
of optical absorption [16,17]. However, the slope of tails is 
also temperature dependent. Formula (4) is of the same 
kind as the Urbach's formula. It explains the temperature 
dependence of the slope of exponential tails at higher 
temperature. 
 
 

Low temperature range: At low temperatures 
practically only photons with sufficient energy, exceeding 2W 
(the width of the forbidden band), can be absorbed by 
material (Fig. 2). The optical transition of electron is 
connected with tunneling process. The "skewed" optical 
transition can be virtually divided into two parts [37-45]: 
The first part is a vertical transition on a virtual energy 
level inside its own localized region (without tunneling); 
the following second part represents a horizontal tunneling 
transition on a real level in an adjacent localized region. 
Thus, absorption of photon in a low-temperature 
mechanism is connected with tunneling of electron 
through a potential barrier. Let us remark that at lower 
temperatures, absorption of light in the vicinity of optical 
absorption edge could principally run without tunneling 
process, i.e. within a single localized region. However, 
probability of such transitions is small due to a distinctly 
discrete character of the lowest levels as well as due to a 
small number of such levels in a single micro-region. 
Therefore, absorption connected with tunneling to adjacent 
regions is more probable. 

 
2.3 The influence of temperature on the process of  
       tunneling of electron trough the potential  
       barrier in optical absorption 
 
The absorption of light at low tempera tures and 

photon energy, hf, from interval 2W < hf < 2W + Wo is, 
according to the barrier-cluster model connected with 
tunneling of electron through the potential barrier (Fig. 2, 
3). Probability, p, of tunneling depends on the energy 
level, on which tunneling runs. In the case of a parabolic 
potential barrier (Fig. 2), the dependence of potential 
energy W(x) of electron on its position can be denoted as 
 

W(x) = −ax2 + Wo 
 
where the constant, Wo, means the height of the barrier 
from the bottom of the conduction band and the quantity a 
determines "narrowness" of the barrier. For the probability 
of the tunneling it can be written [26] 
 
 p ≈ exp {−A ∆W}                            (6) 

 
where A is a constant depending on dimensions of the 
barrier 

A = 
⎭
⎬
⎫

⎩
⎨
⎧
−

a
m2

h
π  

 
and ∆W is the energy difference between the energy level 
of peaks of potential barriers and the energy level on which 
the tunneling is running, m – mass of electron.  
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Fig. 3 The potential barrier 
 

 
 

Fig. 4  The influence of  temperature on  the process of 
tunneling of electron trough the potential barrier. 

 
 

Should an electron take only the photon energy in 
absorption, we could write on the base of Fig. 2-4  
 
 ∆W = 2W + Wo − h f                                 (7) 
 

The probability of tunneling is determined before all 
by energy of the absorbed photon, however, not only by it. 
It may seem at the first sight that phonons play no role in 
the low-temperature absorption. However, it is not the case 

 
2.4 The influence of temperature on the optical  
       absorption  
 
In papers [37-39] was studied effect of temperature on 

electron tunneling across barriers. It was shown there, that 
for the quantity ∆W the relation (7) has to be replaced by 
the relation  
  
 ∆W = 2W + Wo − hf − CT                     (8) 

 
so that the relation (6) takes the form          
   
 p ≈ exp [−A (2W + Wo − (hf  + CT))]              (9) 

 
It is assumed, that ∆W(T) = ∆W(0) − δ1 −  δ2 (Fig. 4) 

and that the values  δ1, δ2 are linearly dependent on 
temperature. 

The coefficient of optical absorption of light, α, is 
directly proportional to probability, p [16,17], so that 
 
 α ≈ p                                        (10) 
 

Based on (3,6,7), the absorption coefficient would be 
 
 α ≈ p ≈ exp [−A (2W + Wo − (hf +CT))]           (11) 
 
or 
 α ≈ exp[A(hf + CT)]                                (12) 
 

This relation gives a true picture not only of 
experimentally observed exponential tails of optical 
absorption at low temperatures, which were already 
clarified in [26], but also of parallel shifting of these 
towards lower absorption, with decreasing temperature.  

As far as the dependence α(hf) is concerned, it also 
follows from (12) that 

 
 α ≈ exp(Ahf)                             (13) 
 
following circumstance. 
 

2.5   Photoluminescence 
 
In works [37-45], processes of photoluminescence in 

chalcogenide glasses were investigated from the viewpoint 
of the barrier-cluster model. There was showed that in the 
frame of this model much regularity (relations) can be 
explained under the assumption that free electrons 
stimulate non-radiate transitions of bounded e-h pairs. It is 
also assumed that at low temperatures free electrons are 
produced in process of optical absorption by manifold 
tunneling through potential barriers. At higher 
temperatures the stimulation role of non-radiate 
recombination of bounded e-h pairs can be supplied by 
free thermal electrons. With increasing electron 
concentration the number of non-radiate transitions 
increases considerably and consequently 
photoluminescence is dimmed highly.   

 
NOTICE: At free thermal electron concentration 

increase the change of recombination mechanism for 
photo-conduction electrons occurs which can lead to 
lowering photoconductivity. The photoconductivity curve 
will have a local maximum at given temperature. 
Additional increase of temperature will cause a decrease of 
photoconductivity.  

 
3.   Photoconductivity 
 
3.1 Mechanism of free electrons origin – basic  
      ideas 
 
If we want to treat a problem of photoconductivity in 

chalcogenide glasses at first we have to answer the 
question in which way in a glass can be created free 
electron via optical method in a range of an exponential 
tail of optical absorption. Just free electrons are carriers of 
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the photoelectric current. The photoabsorption in a range 
of the exponential tail is connected – as it was already said 
– with electron tunneling through potential barriers. 
Majority of electrons in this transition pass through one 
barrier but a certain (comparatively small) part of electrons 
can pass through many barriers.  

The source of free electrons in a non-crystalline 
matter during photo-irradiation at low temperatures is a 
multiple tunneling of a small electron fraction at the 
process of the optical absorption connected with tunneling. 
For this mechanism, it is essential that the majority of 
electrons execute a tunneling through one potential barrier 
at the optical transition. Some electrons drive a tunnel s - 
times across s barriers consecutively at the optical 
transition. In this manner, electrons overcome a long 
distance from their original region (together with a 
corresponding hole) and become free. An electron will no 
longer be bounded with a hole by the Coulomb force.  

According to [37-45], the probability, p, of a single 
tunneling of such a particle is proportional to the expression 

 
 p ≈ exp [−A (2W + Wo − (hf  + CT))]             (14) 
 

p ~ exp (A (hf + CT)) 
 

For the probability ps of the multiple-tunneling of the 
electron through s barriers, we can write 
 
 Ps ~  ps ~ exp[sA (hf +  CT)]                  (15) 

 
The probability of    the creation of a free electron is 

proportional to expression (15). Since the probability is 
small, the number of free electrons will slowly increase 
after the beginning of the illumination of the glass.  

The probability of a free electron appearance at the 
mechanism of multiple tunneling during absorption at the 
temperature T and energy of activating photon hf is given 
as follows 

 
 Ps = exp(As.(hf + CT – βo))                        (16)  
 
where exp(-β) represents indeed the pre-factor in that 
relation. 
 

3.2   Processes affecting free electron concentration  
 
In our consideration we come out from an assumption 

that for photoconductivity are responsible free electrons 
created in a process of optical absorption by the 
mechanism of multiple electron tunneling through 
potential barriers (which are situated) occurred at lower 
margin of the conduction band. Generation those free 
electrons can be described in accord with the relation (16) 
by the formula  

 

 ( )[ ]1exp β−+=
⎭
⎬
⎫

⎩
⎨
⎧= CThfsA

dt
dnG

gen

     (17) 

 

where a generation factor G determines the number of free 
electrons created in a unit time.  

That number is of course proportional to the 
probability Ps of multiple tunneling of an electron at 
optical absorption.  

A reversal process to the electron generation is a 
recombination action which can be in general described by 
the relation 

 )(. t
RECOMB

nnnK
dt
dnR +=

⎭
⎬
⎫

⎩
⎨
⎧=    (18) 

 
where R is the recombination factor. It represents the 
number of annihilated free electrons per unit time. Symbol 
nT denotes concentration of hole (or free electrons) of 
thermal origin. Process of recombination is affected in 
general (at higher temperatures) also by holes created by 
means of thermal mechanism. It holds  
 

 )exp(
kT
WFnt −=                             (19) 

 
where W is the width (broadness) of forbidden gap of a 
non-crystalline semiconductor  (chalcogenide glass) and F 
is a constant. 

The change of free electron concentration with time is 
given by the relation.  
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In an equilibrium state it holds 
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respectively 
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In a steady state G = R , so that   n(n + nt) = G, from 

which it follows 
 

 02 =−+ Gnnn t                           (24a) 
 

In accordance with (17) we obtain 
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The change of the constant β1 for the β2 in (25) in 
comparison with (17) is connected with existence of the 
constant K in (18). 

The solution of this equation in an interval of positive 
values of n is   

 G
nn

n tt +⎟
⎠

⎞
⎜
⎝

⎛+−=
2

22
                 (25) 

This relation also automatically includes character of 
a recombination mechanism which one changes from one 
type to other one with increasing temperature. The change 
of the recombination mechanism type in significant 
manner influences the shape of a photoconductivity curve 
and it is a dominant reason (source) for existence of 
maximum that curve. 
In the case if  nt  >>  n it follows from the relations (17-19, 
26) the aproximate relation  
 

 ( )[ ]β−+= CThfsA
kT
Wn exp)(exp   (26a) 

 
resp. if  nt  <<  n  
 
 ( )[ ]β−+= CThfsAn 5.0exp                   (26b) 

 
3.3 Two mobility sub-bands of free electrons  
 
Next we want to point out one important feature: a 

level of photoconductivity is not determined by 
concentration n given by (25) only. Very important will be 
too, a distribution of the total number n of electrons into 
two mobility sub-bands. This distribution split is caused 
by the temperature.    

One fraction of concentration n1 in a steady state will 
be in sub-band of high mobility µ1 therefore, at energy 
levels above the peaks of potential barriers. The second 
fraction of concentration n2 will be distributed in sub-band 
of low mobility µ2 at energy levels below the  peaks of 
potential barriers. The number n1 of free photo-electrons in 
the sub-band of high mobility can be expressed as  
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Whereas, the number of free electrons in the sub-band 

of low mobility (with energy width Wo) will be determined 
by the difference n - n1 = n2, where   
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3.4   Photoelectric conductivity  
 
The total photoconductivity will be determined as  

 
 2211 nn µµσ +≈                        (29) 
 

Apparently at the some time it holds .21 µµ >>  
If one substitutes the concentrations accordingly to 

(27, 28) into the relation (29), then one obtains   
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In addition, if one expresses the concentration n in 

accord with (25) then (30) takes the form   
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The result we have obtained can be expressed as 
follows  
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where G is determined by (17)  and nt  by (19). Just in this 
form (that is, in a form of a graph of the type log σ(1/T ) 
usually were published measured graphical dependences.  
 

 
 

Fig 5 The photoconductivity dependency on the 
temperature according to the theoretical formula (32).  

 
3.5 Computer is needed (The need for computer  
       analysis) 
 
Resulting relation (31, 32) determining 

photoconductivity is rather complex. On the first sight one 
can not think about the behavior of the corresponding 
curve. For all that, there is the need to examine this 
relation by using numerical methods and computer. One 
result we se in Fig. 5. Such investigation showed that this 
relation gives results in good agreement with experimental 
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ones. More detail arguments we shall introduce in part 
entitled: Discussion and confrontation.     

 
4.  Special cases 
 
4.1 High temperatures, low intensity of optical  
      field excitation respectively (or optical driven  
      field) 
 
(An interval of exponential increase of the function 

σ(1/T) 
In this case the condition nnt >>  is fulfilled. For R 

- according to (18) - approximately holds 
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The relation (25) then takes the form 
  
 ( )[ ] .0exp 2 =−+− βCThfsAnnt      (34) 

 
from which -with respect to (19) - it follows  

 ( )[ ]β−+= CThfsA
kT
Wn exp)exp(   (35) 

 
According to (30) one can write for photoconductivity 
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In an interval of higher temperatures the term  
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is negligible small in comparison with the other term in 
last bracket. Consequently   
 

 ( )[ ]βσ −+
−

≈ CThfsA
kT

WW o exp)exp(   (37a) 

or  
 

 ( )βσ −++
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≈ CThfsA
kT

WW
T
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That function possesses (or at least may have) for 

relevant parameters local minimum. At either side of this 
unexpected minimum the function usually increases 
strongly. On the side where argument 1/T increases the 
first term dominates on the right side of the relation (37b).   

The function (37b) linearly increases there (so that 
photoconductivity σ is the exponential function of the 
argument 1/T). It holds approximately  
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≈
Tk

WW o 1lnσ                     (38) 

 
This function represents a straight line. Otherwise, 

plot of the function (38) (of independent variable 1/T) is 
the straight line and the slope of this straight line is 
positive and equals to +(W-Wo)/k. At the experimental 
curve in Fig. 5 that straight line is depicted as the section 
1. 

At opposite side of the minimum of the function (37b) 
the term As.(hf + CT - β ) dominates.    There the relation 
is valid approximately  
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A decrease of the value 1/T (increasing  temperature) 
increases values of that function steeply (hyperbolic).   

 
REMARK: Two extreme, but only one is  
                     observable? 
 
In general the curve (36) has two extreme, one 

maximum and one minimum. The maximum appertains to 
maximum of photoconductivity which is well observable 
in experiment. The other extreme – minimum - wasn’t 
observed (as far as we known) in experiment. It is possible 
that this interval of sufficiently high temperatures is 
outside of validity our model. This can be connected 
among others with the highness of potential barriers (W0) 
which in a case of chalcogenide glasses reaches about a 
few of 10-1 eV. It is possible that this yet hidden section of 
the curve will emerge at lower incident photon energies. 
Such observation should support the barrier cluster model.  

The relation (36) can be written down as  
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accordingly, in this region it holds σ ≈ G. The 
photoconductivity increases in this case proportional to the 
intensity of illumination (irradiation). In different parts of 
the photoconductivity curve it will be otherwise. 

 
4.2 Intermediate temperatures (high intensity of  
       optical exciting)  
 
(The region of exponential decrease of the function 

σ(1/T)).  
In the special case, when nnt << , regarding (18) it 

is possible for coefficient R write  
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Instead of (24) one obtains 
 
 02 =− Gn                              (42) 

 
Problem solution gives  

 
 ( )[ ]β−+= CThfsAn 5.0exp               (43) 
 

The photoconductivity in this case will be expressed 
(taking into account (24)) as follows.  
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The relation (44) with respect to (17) takes the form 
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In this region thus it holds  
 
 G≈σ                                  (46) 
 

The photoconductivity increases with increasing 
illumination proportional to the second root of intensity 
illumination. This is in agreement with experiment [16, 
17]. 

The relation (45) in a region of intermediate 
temperatures when inequality  
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is valid can be written as  
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This dependency lnσ(1/T) represents the straight line 

with negative slope (-W0/2k). At the experimental curve in 
Fig. 5,  that straight line is depicted as the section 2. 

Just, this section represents most typical behavior of 
the photoconductivity in chalcogenide glasses. That 
character of dependency manifests (expresses) oneself in a 
broad extent (a few orders) of photoconductivity.  The 
slope of (48) enables us to determine (at least evaluate) 
energy width W0 of a low mobility sub-band and so the 
height of potential barriers.   

 
4.3 Low temperatures and very low levels of  
         photoconductivity 
 
(A region of stabilizing σ(1/T)-function at a low level) 

At very low temperatures in the relation (17), 
consequently in the formula 
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the term (in the curl bracket) will have the value µ2. 
Then that relation can be approximate as  

 
 ( )[ ][ ]βµσ −+≈ CThfsA5.0exp2          (50) 
 

The steep exponential regress of photoconductivity at 
lowering temperature almost stops in this region (Fig. 5, 
section 3).  The function   
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at T → 0  approaches the value  
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That predicts our model. But in our consideration a 

simplifying assumption was used: the mobility of a low 
mobility sub-band was allowed to be a constant 
independent on the temperature. That’s not the case. In 
reality, decreasing the temperature in a certain range 
mobility µ2 decreases slowly.  

This is connected with lowering of mean level at 
which transport of electrons through barriers is in 
progress. For all that a soft lowering of photoconductivity 
at a temperature decrease apparently overshoots too in this 
region due to the decrease of   µ2 at a cooling. 

The relation (49) can be written as  
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 (53) 
so that it holds 
 G≈σ                                 (54) 
 

The better aproximation in the region of low  
 temperatures 
 
The better aproximation in the region of the very low 

temperatures we obtain if the band of low mobility split in 
a more sub-region  with different mobilities. 

The situation in the simplest case of two sub-regions 
shows the Fig. 6b. In these case the electrons can have 
three values of mobilitie µ1, µ2, µ3. 
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Fig. 6   The simplified look on mobility of electrons in 
conductin band. High mobility band is situated above  
level of the peaks of the barrier. Below is the low 
mobility band. a) -  one  band of the low moblity µ2, b) –  
                two bands of the low mobilities µ2, µ3. 

 
In accordance with Fig. 6 it is possible for concentration of 
electron in separate sub-regions of conduction band to 
write 
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For photoconductivity then is valid 
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Fig. 7. The experimental dependence of 
photoconductivity upon the temperature according to 
[16]. The  grey  area  corresponds  to  different  samples                       
                     made from the same material. 

 
In a special cases we can instead of relation (40), resp. 

(44, 49) write 
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Fig. 8. Photoconductivity dependence upon the 
temperature according to the theoretical formula (32) for 
different mobility values µ2 of curriers  in  a sub-band  of  
                                    low mobility 
 
 
5. Discusion  
 
Typical dependence of photoconductivity obtained 

from experiment for a special chalcogenide glasses is 
depicted in Fig. 7. If compare that result with theoretical 
one (see Fig. 8, one can conclude that quantitative 
agreement is relatively good. The relation (31, or 32) 
enables to investigate dependence of photoconductivity on 
intensity of an incident irradiation. 

 

 
Fig. 9 The experimental temperature dependences of the 

photoconductivity in a chalcogenide glass for various 
intensities of the activated irradiation [17]  .  

 

The experimental dependences of the 
photoconductivity for various intensities of the irradiation 
we can se in Fig. 9. The theoretical dependences according 
to (32) we se in Fig. 10.  The experimental data relevant 
for photoconductivity activated by irradiation in a region 
of the exponential tail can be explained in the frame of the 
barrier-cluster model. 

As it was shown above, in low temperature region and 
high intensity of irradiation the level of photoconductivity 
is proportional to the root of irradiation intensity (hence 

G≈σ ) whereas in a region of high temperatures and 
low intensities the photoconductivity is proportional to the 
level of irradiation {hence σ ≈ G). It is in accordance with 
experimental results. 

Here presented model of photoconductivity of 
chalcogenide glasses enables to explain characteristic 
dependency of photoconductivity on temperature in 
relatively wide temperature interval. It explains why the 
photoconductivity in a wide interval of temperatures 
decreases and why this decrease at certain low values of 
the photoconductivity practically stops, or at least rapidly 
slows down. The reason rests in small values of the 
electron mobility in the region of low mobility sub-band 
(under the level of barrier’s peaks) 

At sufficiently high temperatures relevant 
concentration of free electron of a thermal origin exists. 
Mechanism of recombination in that region of 
temperatures is by now different from that in the region of 
low electron concentration of thermal origin. It results in 
an increase of photo-curriers recombination and 
consequently to the decrease of photoconductivity at an 
increase of the temperature. 

 
 

Fig. 10 The theoretical temperature dependences of the 
photoluminescence in a chalcogenide glass for various 

intensities of an activated irradiation (according to (32)). 
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Acquired theoretical expression of the 
photoconductivity curve represents behavior of the real 
experimental curve in the wide interval of temperatures at 
either side of the curve maximum. The theoretical 
behavior of the curve in a region of very high temperatures 
provides however a new strong increase of 
photoconductivity by increasing temperature. That fact is 
not experimentally confirmed up to now because 
experiments on the photoconductivity in that region of the 
temperatures are missing. One can not exclude, that in this 
temperature region the conditions for applicability of our 
model are no longer fulfilled. Maybe, it is due to the fact 
that the energy width W0 of the low mobility sub-band is 
rather small (at about  
10-1eV). Therefore, it is possible that in this region the 
relation (17) for expression of the generation factor G is no 
longer applicable. 

 
 
6. Conclusion 
 
It is shown in this article, that several experimental 

data relevant for photoconductivity activated by irradiation 
in a region of the exponential tail can be explained in the 
frame of the barrier-cluster model. When the temperature 
and energy of activating photons increases, the probability 
of the multiple tunneling also increases which implies an 
increase of an optical production of free electrons. This 
leads to the increase of photoconductivity.  

Study of the optical properties of chalcogenide glasses 
is very important for the determination of the electronic 
band structure as well as other optical parameters, such as 
optical energy gap and refractive index.  

 
Note: A further literature about the optical 

phenomena in chalcogenide glasess can be found in [83 - 
95].  

 
 
Acknowledgement 
 
At the end, I want to thank Prof. Viktor Bezák from 

the Faculty of Mathematics, Physics and Informatics, 
Commenius University in Bratislava and Prof. František 
Čulík from the FCE, Slovak University of Technology in 
Bratislava for valuable discussions on this topic. 

 
References 

 
  [1] Y. Hamakawa (edit.), Amorphous semiconductor –  
        Technologies and devices, 1983 North – Holland,  
        Amsterdam-New-York-Oxford, OHM, Tokyo-Osaka- 
        Kyoto (Amorfnyje polupro-vodniky i pribory na ich       
        osnove, ed. S. S. Gorelika, Metalurgia, Moskva,  
        (1986). 
  [2] A. M Andriesh, M. S. Iovu, S. D. Shutov,  
        J. Optoelectron. Adv. Mater. 4(3),  631 (2002).     
  [3] M. Popescu, Photoinduced Phenomenon and elements  
        for integrated Optics based on Non-crystalline  
        chalcogenide semiconductors, Ed. Chisinau, (2003). 

  [4] Photoinduced metastability in amorphous  
        semiconductors, Ed. A. E. Kolobov, Wiley-VCH  
        GmbH, (2003). 
  [5] Non-Crystalline Materials for Optoelectronics, Series:  
        Optoelectronic Materials and Devices, Vol. 1,  
         June 2004, Editors: G. Lucovsky, M. Popescu 
         INOE Publishing House, 482 pp. (2004) 
  [6] Semiconducting Chalcogenide Glass I: Glass  
        formation, structure, and simulated transformations in  
        Chalcogenide Glass, Eds. R. Fairman, B. Ushkov,  
        Semiconductors and Semimetals (Series), Vol. 78,  
        Elsevier, (2004). 
  [7] J. Singh, K. Shimakawa, Advances in Amorphous  
        Semiconductors (Volume in the Series "Advances in  
        Condensed Matter", Gordon& Breach/Taylor &  
        Francis,London, 2003, 336 pp. (2003). 
  [8] Contributions to Non-crystalline Semiconductor  
        Physics and to Optoelectronics, Homage book  
        dedicated to the Academician Professor Andrei  
        Andriesh and Professor Serghei Shutov with their's  
        70's anniversaries, Editors: A. Buzdugan and 
        M. Iovu, Academy Press, Chisinau, 2003, 248 pp..  
        (2003). 
  [9] Physics and Applications of Disordered Materials  
        Editor: M. A. Popescu, INOE Publishing House,  
         390, (2002). 
[10] M. Popescu, J. Optoelectron. Adv. Mater.  
        8(6), 2164 (2006). 
[11] V. Lyubin, M. Klebanov, A. Arsh, I. Shapiro, B. Sfez,  
        J. Optoelectron. Adv. Mater. 8(6), 2077 (2006). 
[12] A. M. Andriesh, M. S. Iovu, J. Optoelectron. Adv.  
         Mater.  8(6), 2080 (2006). 
[13] M. Vlček, H. Jain, J. Optoelectron. Adv. Mater. 8(6),  
        2108 (2006). 
[14] J. Teteris, J. Optoelectron. Adv. Mater. 4, 687 (2003). 
[15] M. Popescu, J. Optoelectron. Adv. Mater. 
        7(4), 2189 (2005). 
[16] N. F. Mott, E. A. Davis, Electron processes in non- 
        crystalline materials, Clarendon Press, Oxford,  
        (1979). (Elektronnyje processy v nekristaličeskich  
        veščestvach, Mir, Moskva (1982)). 
[17] M. H. Brodsky, Amorphous semiconductors, Springer  
        Verlag Berlin, Heidelberg, New York, (1979).  
         (Amorfnyje poluprovodniky, Mir, Moskva, 1982). 
[18] B. T. Kolomijets, Sovremennyje tendencii i  
        issledovania chalkogenidnych stekloobraznych  
        poluprovodnikov, Conf.: Amorphous semiconductors  
        78, Pardubice, p.3, (1978). 
[19] M. Popescu, Non-crystalline chalcogenides, Solid  
        state science and technology Library, Vol.8, Kluwer  
        academic publishers, Dordrecht/Boston/London, 378  
         (2000). 
[20] A. M. Andriesh, M. S. Iovu, Optical properties of  
        chalcogenide glasses, Moldavian journal of  physical  
         science, 2 (3-4),  p.246, (2003). 
[21] Semiconducting chalcogenide glass I: Glass    
        formation, structure, and stimulated transfor-mations  
        in chalcogenide glasses, Ed. R. Faimar, B. Ushkov,  
        Semiconductors and semi-metals, Vol. 78, Elsevier- 
        academic press, Amsterdam, Boston, London, New  



1944                                                                                                I. Banik 
 

        York, (2004). 
[22] D. Ležal, P. Macko, Non-crystalline semiconductors,  
        (In slovak: Nekryštalické polovodiče), ALFA,  
        Bratislava, p.238, (1988). 
[23] H. Overhof, Fundamental concepts  in the physics of  
        amorphous semiconductors, J. Non-Cryst. Solids.  
         227-230, 15 (1998). 
[24] L. Červinka, R. Hosemann, W. Vogel, J. Non-Cryst.  
        Solids 3, 294 (1970). 
[25] L. Červinka, A. Hrubý, M. Matyaš, T. Šimeček,  
        J. Škácha, L. Štourač, J. Tauc, V. Vorlíček,  
        P. Hoschl, J. Non-Cryst. Solids 4, 258(1970). 
[26] J. T. Edmond, Brit. Journ. Apll. Phys.,  
        17, 979 (1966). 
[27] B. T. Kolomijets, T. F. Mazec, Š. M. Efendjev,  
        A. M. Andries, J. Non-Cryst. Solids 4, 45 (1970). 
[28] F. Kosek, J. Tauc, Czech. Journ. Phys,  
        B 20, 94 (1970). 
[29] A. E . Owen, Semiconducting glasses, part 2.,  
        Properties and interpretation, Contemp Phys. 
        11, 257 (1970).   
[30] J. Tauc, A. Menthe, D. L. Wood, Phys. Rev. Lett. 
       25,  749 (1970).   
[31] B. T. Kolomijets, Glassy semiconductors, (Ste- 
        kloobraznyje poluprovodniky), Vestnik AN SSSR,  
         6, 54 (1969). 
[32] N. Connen,  Phys. Stat. Sol.(b), 53,  213 (1972). 
[33] D. L. Dexter, Phys. Rev. Lett. 19, 1383 (1967). 
[34] J. D. Dow, D. Redfield, Phys. Rev. B1, 3358 (1970). 
[35] Y. Toyozawa, Tech. Rep. Inst. Solid. St. Phys. (Univ. 
        Tokyo) A, 119, 1 (1964). 
[36] L.V.Keldyš, J.V.Kopajev, FTT 6, 2791 (1964). 
[37] I. Banik, CEJP 3(2), 270 (2005). 
[38] I. Banik, J.Non-Cryst. Sol. 353, 1920 (2007).   
[39] I. Banik, J. Optoelectron. Adv. Mater.  
        9(10),  3171 (2007). 
[40] I. Banik, J. Optoelectron. Adv. Mater.  
        10(3), 475 (2008). 
[41] I. Banik, J. Optoelectron. Adv. Mater.  
        11(2), 91 (2009). 
[42] I. Banik,  Trans Tech. Publications, Switzerland,  
        Advanced Materials Research, 39-40, 253 (2008). 
[43] I. Banik,  J. Ovonic Research 4(2), 35 (2008). 
[44] I. Banik, Chalcogenide Letters 5(5), 87 (2008). 
[45] I.Banik, Journ. Non-Oxide and Photonic Glasses  
        1(1), 6 (2009). 
[46] R. A. Street, T. M. Searle, I. G. Austin, Amorphous  
        and Liquid Semiconductors, eds. J. Stuke,  
        W. Brening, Taylor and Francis, London,  
        p.953, (1974). 
[47] B. T. Kolomijets and al., J. Non-Cryst. Solids  
        4, 289 (1970). 
[48] R. Fischer, U. Heim, F. Stern, K. Weiser, Phys. Rev. 
        Lett. 26, 1182 (1971). 
[49] B. T. Kolomijets, T. N. Mamontova,  
        E. A. Smorgonskaya, A. A. Babajev, Phys. Stat.  
        Solidi a 11, 441 (1970). 
[50] R. A. Street, T. M. Searle, I. G. Austin, Journ. Phys.  
        C 6, 1830 (1973). 

[51] Yu. Ivashchenko, B. T. Kolomijec,  
        T. N. Mamomtova, Phys. Stat. Solidi a 
        24, 401 (1974). 
[52] S. G. Bishop, U. Strom, P. C. Taylor, Proc 13th Conf.  
        Physics of Semiconductors, ed. F.G. Fumi, Rome,  
        p.563, (1976).  
[53] S. G. Bishop, U. Strom, P. C. Taylor, Phys. Rev. Lett  
        34. 346 (1975).   
[54] R. A. Street, T. M. Searle, I. G. Austin, Phil. Mag.,  
        30, 1181 (1974). 
[55] J. Cernogora, F. Mollot, Benoit a la  
        C. Guillaume, Phys. Status Solidi a 15, 401 (1973). 
[56] K. Morigaki, I. Hirabayashi, M. Nakayama, S. Nitta,  
        K. Shimakawa, Solid State Commun. 33, 851 (1980). 
[57] D. K. Biegelsen, R. A. Street, Phys. Rev. Lett.  
        44, 803 (1980). 
[58] J. Shah, A. E. DiGiovany, Solid State Commun.  
        37, 717 (1981). 
[59] J. Shah: Phys. Rev. B 21, 4751 (1980). 
[60] P. B. Kirby, E. A. Davis, J. Non .Cryst. Mater.  
        35/36, 945 (1980). 
[61] J. H. Stathis, M. A. Kastner, Phys. Rev  
        B 35(6), 2972 (1987). 
[62] G. Fasol, J. phys. C: Solid state phys.  
        18, 1729 (1985).   
[63] R. A. Street, Phys. Rev. B 17(10), 3984 (1978). 
[64] R. A. Street, Adv. Phys. 25, 397 (1976). 
[65] J. C. Phillips, J. Non-Cryst. Solids 41, 179 (1980). 
[66] C. M. Gee, M. Kastner,  Phys. Rev. Lett. 42, 1765 
        (1979). 
[67] G. S. Higashi, M. Kastner, J. Phys. C: Solid St. Phys.  
        12, L821 (1979). 
[68] M. Kastner, J. Phys. C: Solid St. Phys. 13, 3319 
        (1980). 
[69] K. Tanaka, J. Optoelectron. Adv. Mater. 3(2), 189    
        (2001). 
[79] M. Popescu, J. Optoelectron. Adv. Mater.  
        6(4), 1147 (2004). 
[71] A. Lorinczi, F. Sava, Chalc. Lett, 2(1), 1 (2005). 
[72] M. Popescu, Proc. Intern. Conf. Amorphous  
        semiconductors 78, Pardubice, 1, 185 (1978). 
[73] N. F. Mott, Journ. of Phys. C: Solid state phys. 
       13, 5433 (1980).   
[74] S. Zamfira, M. Popescu, F. Sava, Chalcogenide letters  
        2(6), 55 (2005).   
[75] M. Popescu, F. Sava, A. Lorinczi, Chalcogenide  
        letters 1(9), 111 (2004). 
[76] P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975). 
[77] R. A.  Street, N. F. Mott, Phys. Rev. Lett.  
        35, 1293 (1975). 
[78] M. Kastner, D. Adler, H. Fritzsche,  Phys. Rev. Lett. 
        37, 1504 (1976). 
[79] G. J. Adrieanssens, A. Stesmans, Journ. Optoelectron.  
        Adv. Mater. 4(4), 837 (2002). 
[80] T. F. Mazec, S. K. Pavlov, M. Závetová, V. Vorlíček,  
        Proc. Amorphous Semiconductors ´78, Pardubice,  
         sept. 1978, p.432, (1978). 
[81] S. A. Kozuikhin, E. N. Voronkov, N. P. Kuzmina,  
        J. Non-Cryst.Solids 352(9-20), 1547 (2006). 



Photoconductivity in chalcogenide glasses on the base of the barrier-cluster model                               1945 
 

[82] R. A. Street, T. M. Searle, I. G. Austin,  
        R. S. Sussman, Journ. Phys. C: Solid state phys.  
        7, 1582 (1974).   
[83] L. Červinka, J. Non-Cryst. Solids. 106, 291 (1988). 
[84] R. A. Street, T. M. Searle, I. G. Austin, Amorphous  
        and liquid semiconductors eds. J. Stuke, W. Brening,  
        Taylor and Francis, London, p.953, (1974). 
[85] K. Tanaka, Disordered Systems and New Materials,  
        eds. M. Borissov, N. Kirov and A.  Vavrek (World  
         Scientific, Singapore, 1989), p.290. (1989). 
[88] S. C. Moss and D. L. Price, Physics of Disordered  
        Materials, eds. D. Adler, H.   Fritzsche and  
         S. R. Ovshinsky (Plenum, New York, 1985) 
         p.77. (1985). 
[87] J. M. Ziman, Models of Disorder (Cambridge  
        University Press, Cambridge, 1979) Chap. 6. (1979). 
[88] R. Zallen, The Physics of Amorphous Solids, John  

        Wiley & Sons, New York, (1983).  
[89] S. R. Elliott, Physics of Amorphous Materials  
        (Longman, Essex, 1990) 2nd ed. (1990). 
[90] V. Vorliček, Czech. Journ. Phys. 25(9), 1042 (1975). 
[91] J. C. Philips, Phys. Rev. B 24, 1744 (1981). 
[92] H. Y. Fan, Phys. Rev. 82, 900 (1951). 
[93] L. Červinka,  J. Bergerová,  M. Trojan, J. Non-Cryst.  
        Solids., 192-193, 121 (1995). 
[94] L. Červinka, J. Bergerová, L. Tichý, J. Non-Cryst.  
        Solids 192-193, 45 (1995). 
[95] L. Červinka, J. Non-Cryst. Solids. 
        156-158, 94 (1993). 
 
 
_______________________ 
Corresponding author: ivan.banik@stuba.sk 

 
 
 
 


